论文部分内容阅读
为了充分利用小波系数之间的统计相依性以更有效地诊断设备状态,提出了一种基于隐Markov树(HMT)的综合诊断模型。首先通过主成分分析将来自多个传感器的信号转换为主成分,求出各主成分对应的频谱,然后通过比较对已训练的各HMT模型的适应度,运用Bayes决策融合法则得到设备状态综合诊断决策。为了克服HMT模型存在的计算溢出困难,采用尺度变换对EM算法进行了改进。通过两个实例验证了该综合诊断模型具有较高的诊断准确率。