论文部分内容阅读
传统CV模型在目标图像存在噪声干扰及图像背景较为复杂的情况下,图像分割效果较差,极易造成误分割。为了提高基于CV模型图像分割的分割效果及分割效率,提出一种基于改进CV模型的图像分割算法。首先,根据曲线演化理论对CV模型的曲线驱动力进行简化,以此提高模型的分割效率;然后,利用L1范数构造CV模型的能量泛函,同时引入中值替代传统CV模型中的曲线拟合中心,在简化数据计算的同时,提高模型对噪声的鲁棒性;最后,将该曲线驱动力与L1范数能量泛函进行融合,以此构造最终的改进CV模型的能量泛函。将所提模型与传统CV