论文部分内容阅读
现有的基于分割的场景文本检测方法仍较难区分相邻文本区域,同时网络得到分割图后后处理阶段步骤复杂导致模型检测效率较低。为了解决此问题,该文提出一种新颖的基于全卷积网络的场景文本检测模型。首先,该文构造特征提取器对输入图像提取多尺度特征图。其次,使用双向特征融合模块融合两个平行分支特征的语义信息并促进两个分支共同优化。之后,该文通过并行地预测缩小的文本区域图和完整的文本区域图来有效地区分相邻文本。其中前者可以保证不同的文本实例之间具有区分性,而后者能有效地指导网络优化。最后,为了提升文本检测的速度,该文