论文部分内容阅读
我们将讨论用于克服频率补偿问题的单块峯值检波器。虽然器件已缩减到一个单块,但仍具有一个小系统的特性。象这样有利于一个系统设计方法,是为了控制电荷注入和输出放大器的场效应晶体管(FET)输入端实现消除高温漏电流的目的,电路设计利用在单块电路中获得的固有的匹配。 图(1)中的典型峯值检波器用了电压放大器和一个二极管或者一个射极跟随器,对电容C_H不定向地充电。A_1“+”端的输出阻抗加上二极管的动态阻抗r_d,组成在反馈回路中确定极点的电阻。二极管的动态阻抗r_d等于(KT/g)/Id,这里Id是对C_H的充电电流。所以极点向S平面的源极转移,其误差等于零。由于极点闭合在系统的反馈回路中,极点移动的本身将不会可观地延长所得时间。但是,在典型的电压放大器的频率补偿中,
We will discuss a single peak detector for overcoming the frequency compensation problem. Although the device has been reduced to a single block, but still has a small system features. As such, a system design approach is advantageous in order to control the FET input terminals of charge injection and output amplifiers for the purpose of eliminating high temperature leakage currents. The circuit design utilizes the inherent matching achieved in a single circuit. The typical peak detector in Figure (1) uses a voltage amplifier and either a diode or an emitter follower to charge the capacitor C_H non-uniformly. The output impedance of A_1 “+” plus the diode's dynamic impedance, r_d, make up the resistance that determines the pole in the feedback loop. The diode's dynamic impedance r_d equals (KT / g) / Id, where Id is the charge current to C_H. So the pole to S-plane source transfer, the error is equal to zero. Since the poles are closed in the feedback loop of the system, the movement of the poles themselves will not significantly extend the resulting time. However, in the frequency compensation of a typical voltage amplifier,