论文部分内容阅读
针对韦伯局部特征(WLD)仅计算中心像素与周围像素差异提取特征的不足,提出了一种韦伯梯度编码(WGC)特征描述的人脸表情识别算法。首先计算当前像素点周围水平、垂直和对角位置上的数值差与当前像素点的差异构成WGC特征的差动激励;然后进一步提出基于水平和对角线优先原则的WGC_HD特征;最后利用最佳分块方式得到行分块WGC_HD特征,采用自动优化参数的SVM分类器完成人脸表情识别。在公共人脸表情库JAFFE和CK库上进行交叉实验,平均识别率及平均特征提取时间分别为95.49%、12.30 ms和97.6