论文部分内容阅读
针对遥感影像分类面临的数据边界模糊性以及遥感信息解译过程不确定性的问题,结合模糊支持向量机在分类应用中可以有效避免噪声样本干扰的特点,提出一种基于云模型求解模糊支持向量机隶属度的方法。该方法通过无需隶属度的逆向云算法输入样本的定量位置得到样本类别的数字特征,再根据正向云算法计算得到每个样本对其定性类别的隶属度。实验结果表明,采用基于云模型隶属度的模糊支持向量机对遥感影像的分类方法是可行的,并能够有效提高对遥感影像的分类精度。