论文部分内容阅读
The thermal behavior of the complex Pr[(C5H8NS2)3(C12H8N2)] in a dry nitrogen flow was examined by TG-DTG analysis. The TG-DTG investigations indicated that Pr[(C5H8NS2)3-(C12H8N2)] was decomposed into Pr2S3 and deposited carbon in one step where Pr2S3 predominated in the final products. The results of non-isothermal kinetic calculations showed that the decomposition stage was the random nucleation and subsequent growth mechanism (n =nential constant In[A/s] was 7.8697. The empirical kinetics model equation was proposed as f(α) =3/2(1-α)[-ln(1-α)]1/3. The X-ray powder diffraction patterns of the thermal decomposition products at 800℃ under N2 atmosphere show that the product can be indexed to the cubic Pr2S3 phase. The transmission electron microscopy (TEM) of the final product reveals the particle appearance of a diameter within 40 nm. The experimental results show that the praseodymium sulfide nanocrystal can be prepared from thermal decomposition of Pr[(C5H8NS2)3(C12H8N2)].