论文部分内容阅读
为解决日益增长的数据体量与实际作业效率和成本的矛盾,用科学的标注体系对患者安全事件语料进行标注,设计了一种基于深度学习的BERT-BiLSTM-CRF模型,结合中文文本语料的语义特征和字符特征对其进行命名实体识别,最终实验F1值为91.49%,相较于BiLSTM-CRF模型和IDCNN-CRF模型,实体的识别性能分别提升了7.33%和8.30%,验证了该模型的有效性。