论文部分内容阅读
目的:勾画危及器官是放射治疗中非常重要的常规工作。然而,目前的人工勾画非常耗时,而且依赖于医生的知识和经验。为此,本研究提出一种深度反卷积神经网络,用于自动和精确地勾画危及器官。方法:深度反卷积神经网络是一个用于自动分割的端到端框架。实验使用了230例头颈部患者的数据,在其中随机选择了184例作为训练集,用于调制自动分割模型的参数,其余46例用作测试集评估方法的性能。用于分割的危及器官包括脑干、脊髓、左腮腺、右腮腺、左颞叶、右颞叶、甲状腺、喉、气管9个危及器官。自动分割精度的量化指标使用戴斯相似性系数和豪斯多夫距离。结果:所有危及器官自动分割的戴斯相似性系数值均在0.70以上(平均值为0.81),豪斯多夫距离值在5.0 mm内(平均值为4.3mm),表明本研究提出的自动分割方法能准确地分割危及器官。结论:利用深度反卷积神经网络建立了一种自动分割危及器官的方法,可以得到较准确的结果,为放射治疗流程自动化提供了技术支持。