【摘 要】
:
High-temperature proton exchange membrane fuel cells (HT-PEMFCs) are pursued worldwide as effi-cient energy conversion devices.Great efforts have been made in the area of designing and developing phosphoric acid (PA)-based proton exchange membrane (PEM) o
【机 构】
:
Department of Chemical Engineering and Analytical Science,The University of Manchester,M139PL,United
论文部分内容阅读
High-temperature proton exchange membrane fuel cells (HT-PEMFCs) are pursued worldwide as effi-cient energy conversion devices.Great efforts have been made in the area of designing and developing phosphoric acid (PA)-based proton exchange membrane (PEM) of HT-PEMFCs.This review focuses on recent advances in the limitations of acid-based PEM (acid leaching,oxidative degradation,and mechan-ical degradation) and the approaches mitigating the membrane degradation.Preparing multilayer or polymers with continuous network,adding hygroscopic inorganic materials,and introducing PA doping sites or covalent interactions with PA can effectively reduce acid leaching.Membrane oxidative degrada-tion can be alleviated by synthesizing crosslinked or branched polymers,and introducing antioxidative groups or highly oxidative stable materials.Crosslinking to get a compact structure,blending with stable polymers and inorganic materials,preparing polymer with high molecular weight,and fabricating the polymer with PA doping sites away from backbones,are recommended to improve the membrane mechanical strength.Also,by comparing the running hours and decay rate,three current approaches,1.crosslinking via thermally curing or polymeric crosslinker,2.incorporating hygroscopic inorganic materials,3.increasing membrane layers or introducing strong basic groups and electron-withdrawing groups,have been concluded to be promising approaches to improve the durability of HT-PEMFCs.The overall aim of this review is to explore the existing degradation challenges and opportunities to serve as a solid basis for the deployment in the fuel cell market.
其他文献
Li-CO2 batteries provide an attractive and potential strategy for CO2 utilization as well as energy conversion and storage with high specific energy densities.However,the poor reversibility caused by the decomposition obstacles of Li2CO3 and C products is
Metal-organic frameworks (MOFs) have been widely studied as efficient electrocatalysts for water oxida-tion due to their tunable structure and easy preparation.However,the rational design of MOFs-based electrocatalysts and fundamental understanding of the
Bulk and interface carrier nonradiative recombination losses impede the further improvement of power conversion efficiency (PCE) and stability of perovskite solar cells (PSCs).It is highly necessary to develop multifunctional strategy to minimize surface
The hybridization between the outmost s orbitals of metal (Bi3+,Sn2+,Pb2+,Ag+) and O 2p orbitals has been widely employed to develop innovative semiconductors with upshift valence band as well as extended visible light response,but it is still challenging
Perovskite solar cells (PSCs) have emerged as a new-generation photovoltaic technology that features both low manufacturing cost and high power conversion efficiencies (PCEs) [1-3].In the past decade,the PCEs of PSCs have increased from 3.8% to 25.5%,whic
Two-dimensional carbon nitride (2D-C3N4) nanosheets are promising materials in photocatalytic water splitting,but still suffer from easy agglomeration and fast photogenerated electron-hole pairs recombi-nation.To tackle this issue,herein,a hierarchical Nb
In this study,we aim to contribute an understanding of the pathway of formation of Fe species during top-down synthesis of dispersed Fe on N-functionalized few layer graphene,widely used in electrocatal-ysis.We use X-ray absorption spectroscopy to determi
In the construction of high performance planar perovskite solar cells (PSCs),the modification of compact TiO2 layer and engineering of perovskite/TiO2 interfaces are essential for efficient electron transfer and retarded charge recombination loss.In this
The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batteries,sulfur is of great interest due to i
Currently,the effective and clean suppression of lithium-ion battery (LIB) fires remains a challenge.The present work investigates the use of various inhibitor doses (Xin) of dodecafluoro-2-methylpentan-3-one(C6F12O) in 300 Ah LIBs,and systematically exam