论文部分内容阅读
研究了Sobolev方程的H~1-Galerkin混合有限元方法.利用不完全双二次元Q_2~-和一阶BDFM元,建立了一个新的混合元模式,通过Bramble-Hilbert引理,证明了单元对应的插值算子具有的高精度结果.进一步,对于半离散和向后欧拉全离散格式,分别导出了原始变量u在H~1-模和中间变量p在H(div)-模意义下的超逼近性质.