论文部分内容阅读
High-order harmonic generation from one-dimensional (1D) multi-atom molecular ions in an ultra-short laser field is theoretically investigated. The dynamics of the electron in a linearly polarized intense laser field is analyzed in terms of 1D Schrodinger equation with the Crank-Nicolson algorithm. The dependence of high-order harmonics on the laser frequency and the inter-nuclear distance is discussed. It is found that the optimum range of inter-nuclear distance should be changed to get extended harmonic generation for different laser frequency, and the lower frequency laser pulse is favorable to higher order harmonic generation as the inter-nuclear distance increases.
High-order harmonic generation from one-dimensional (1D) multi-atom molecular ions in an ultra-short laser field is theoretically investigated. The dynamics of the electron in a linearly polarized laser field is analyzed in terms of 1D Schrodinger equation with the Crank-Nicolson algorithm. The dependence of high-order harmonics on the laser frequency and the inter-nuclear distance is discussed. It is found that the optimum range of inter-nuclear distance should be changed to get extended harmonic generation for different laser frequency, and the lower frequency laser pulse is favorable to higher order harmonic generation as the inter-nuclear distance increases.