论文部分内容阅读
The AB2 type bulk polymerization of 3,5-bis(trimethylsiloxy)benzoyl chloride is studied by the reactive 3d bond fluctuation lattice model (3d-BFLM). Through tuning the reactivity parameters, the experimental data are fitted well via an iterative dichotomy method. By using the optimized reactivity parameters, the number-average degree of polymerization and degree of branching obtained in simulation are very close to experimental data. Meanwhile, the information about the weight-average degree of polymerization and the polydispersity index is provided, and the internal structural properties of hyperbranched polyesters are investigated. Simulation results demonstrate that the 3d-BFLM can be used to study specific hyperbranched polymerizations semi-quantitatively which is helpful to deep understand the kinetics of reactions and make predictions for specific polymerization systems.
The AB2 type bulk polymerization of 3,5-bis (trimethylsiloxy) benzoyl chloride is studied by the reactive 3d bond fluctuation lattice model (3d-BFLM). Through tuning the reactivity parameters, the experimental data are fitted well via an iterative dichotomy method. By using the optimized reactivity parameters, the number-average degree of polymerization and degree of branching obtained in simulation are very close to the experimental data. While the information about the weight-average degree of polymerization and the polydispersity index is provided, and the internal Structural properties of hyperbranched polyesters are investigated. Simulation results demonstrate that the 3d-BFLM can be used to study specific hyperbranched polymerizations semi-quantitatively which is helpful to deep understand the kinetics of reactions and make predictions for specific polymerization systems.