融合关键对象识别与深层自注意力的Bi-LSTM情感分析模型

来源 :小型微型计算机系统 | 被引量 : 0次 | 上传用户:hwhxl0
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在线评论文本通常涉及多个评价对象,对象的表达方式有显式和隐式之分,针对不同对象的情感倾向可能不会完全一致.关键评价对象是评论中最受关注的对象,其相应的情感语义对整条评论的情感观点起主导作用.本文构建了融合关键对象识别与深层自注意力机制的Bi-LSTM模型,以提升短文本情感分类的效果.使用CNN处理文本,基于卷积层输出结果识别关键评价对象,并在此基础上完成深层自注意力的学习.将对象信息与文本信息进行融合,利用注意力机制强化的Bi-LSTM模型得到评论文本的情感分类结果.在酒店评论数据集上进行实验,与之前基于深度学习的模型相比,本文方法在精确率、召回率和F-score评价指标方面均有更好的表现.
其他文献
推荐系统的目的是为了基于用户喜爱,为用户提供最高匹配度的潜在项目.但如果用户和项目提供者喜欢单一的热门项目,那么用户不能发现新颖性项目,会给用户和项目的提供商双方造
对金融客户进行准确分类是向其提供个性化服务的前提.针对某金融产品的销售需求,通过在线推销测试收集客户样本数据,并根据用户反馈标注样本.通过构造概率分布函数、离散化连