论文部分内容阅读
采用静态高压釜研究了去应力态和再结晶态的SZA-4(Zr-0.8Sn-0.25Nb-0.35Fe-0.1Cr-0.05Ge)、SZA-6(Zr-0.5Sn-0.5Nb-0.3Fe-0.015Si)锆合金以及去应力态的参比合金A(Zr-1Sn-1Nb-0.1Fe)在360℃/18.6MPa去离子水、360℃/18.6 MPa/0.01 mol·L~(-1)含锂水和400℃/10.3 MPa过热蒸汽3种条件下的耐腐蚀性能,采用扫描电子显微镜(SEM)和透射电子显微镜(TEM)观察分析合金的微观结构。结果表明:在3种腐蚀条件下,SZA-4和SZA-6的耐腐蚀性能均明显优于参比合金A,相同腐蚀条件下,再结晶态的SZA-4耐腐蚀性能优于去应力态,而SZA-6表现出相反规律;SZA-4中存在2种密排六方结构(HCP)的第二相,一种为尺寸较小的Zr(NbFeCr)_2,另一种为尺寸较大的Zr(NbFeCr Ge)_2;SZA-6中存在着面心立方结构(FCC)的(ZrNb)_2Fe和密排六方结构(HCP)的Zr(NbFe)_2两种第二相。探讨了合金成分和第二相对3种Zr-Sn-Nb锆合金耐腐蚀性能的影响机理,认为合金成分是引起耐腐蚀性能差别的主要原因。
In the static autoclave, the properties of de-stressed and recrystallized SZA-4 (Zr-0.8Sn-0.25Nb-0.35Fe-0.1Cr-0.05Ge) and SZA-6 (Zr-0.5Sn-0.5Nb-0.3Fe (Zr-1Sn-1Nb-0.1Fe) in 360 ° C / 18.6 MPa deionized water and 360 ° C / 18.6 MPa / 0.01 mol·L ~ The corrosion resistance of the alloy was investigated under the conditions of lithium-containing water and 400 ℃ / 10.3 MPa superheated steam. The microstructure of the alloy was analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the corrosion resistance of SZA-4 and SZA-6 is better than that of the reference alloy A under the three kinds of corrosion conditions. Under the same corrosion conditions, the corrosion resistance of SZA-4 in recrystallized state is better than that of de-stressed state , While SZA-6 showed the opposite law. There are two kinds of second phase of hexagonal close-packed hexagonal structure (HCP) in SZA-4, one is Zr (NbFeCr) _2 with smaller size and the other is SZA- Zr (NbFeCrGe) _2. There are two kinds of Zr (NbFe) _2 second phases in (SZA-6), such as FCC (FCC) and Zrhexahedra (HCP) The effect mechanism of the alloy composition and the second relative corrosion resistance of the three Zr-Sn-Nb zirconium alloys was discussed, and the alloy composition was the main reason that caused the difference in corrosion resistance.