【摘 要】
:
随着具有损耗小、供电效率高等特性的柔性直流配电网逐渐成为智能配电的焦点,对其保护技术的研究也成为保证配电网安全运行的重要内容.为此,提出了一种基于瞬时功率特性的中压柔性直流配电网故障定位及保护方法.首先,对直流线路发生单极接地故障和双极短路故障时的暂态特征进行分析;其次,考虑瞬时功率特性在不同故障类型及不同故障位置时有所不同,将瞬时功率作为保护判据来进行区内、外不同故障类型和故障区段判定;最后,在PSCAD上搭建双端柔性直流配电网模型,对区内、外故障及故障区段判定进行仿真验证,并设置不同过渡电阻.仿真结果
【机 构】
:
重庆理工大学,重庆 400054;重庆市能源互联网工程技术研究中心,重庆 400054;重庆理工大学,重庆 400054;国网浙江省电力有限公司绍兴供电公司,浙江 绍兴 312000
论文部分内容阅读
随着具有损耗小、供电效率高等特性的柔性直流配电网逐渐成为智能配电的焦点,对其保护技术的研究也成为保证配电网安全运行的重要内容.为此,提出了一种基于瞬时功率特性的中压柔性直流配电网故障定位及保护方法.首先,对直流线路发生单极接地故障和双极短路故障时的暂态特征进行分析;其次,考虑瞬时功率特性在不同故障类型及不同故障位置时有所不同,将瞬时功率作为保护判据来进行区内、外不同故障类型和故障区段判定;最后,在PSCAD上搭建双端柔性直流配电网模型,对区内、外故障及故障区段判定进行仿真验证,并设置不同过渡电阻.仿真结果符合故障类型和故障区段判据,验证了所提方法的有效性和对过渡电阻的耐受能力.
其他文献
从语言学上分析了基于知识本体与基于词向量的词语语义相似度计算方法的不同特点,指出两类方法进行语义计算的优点与不足,并据此提出了基于强化学习策略的混合式语义相似度计算方法.该方法不但能够解决使用单一方法无法解决的语义计算问题,而且计算结果更接近人工判定结果,与MC30人工判定值的皮尔逊相关系数达到0.917.最后指出了提升该类算法性能的途径,一方面,可将更多的语言学信息作为观测变量,使得学习算法面临的环境更接近真实语言环境;另一方面,可使用更高层次的语言学任务结果作为奖励,增加算法解决问题的能力.
传统的视频情感识别工作主要集中在面部表情、人体的动作行为等,忽略了场景和对象中包含大量的情感线索及不同对象之间的情感关联.因此,提出了一个基于视觉关系推理和跨模态信息学习的音视频特征融合网络模型用于预测视频情感.模型主要包括三部分:对象间的情感关系推理、声学特征提取、跨模态交互融合.首先,采用Mask R-CNN模型提取出包含物体的区域并提取出相应的特征序列,利用图注意力网络对视频帧中的不同区域之间的情感关联进行推理,找到视频帧中的关键区域;然后,利用双向长短时记忆网络提取对数梅尔频谱片段的帧级上下文信息
为提高锂离子电池在复杂工况下的预测能力和建模精度,提出一种基于滑动窗口和长短时记忆(long short term memory,LSTM)神经网络的锂离子电池建模方法.首先建立了基于神经网络的锂离子电池模型,确定了神经网络的基本结构,通过LSTM层、向量拼接层和全连接层分别实现了时序特征提取、特征融合和回归预测.然后提出了滑动窗口的输入向量处理方法,滑动窗口每次向前推进一个时间点,通过限制时间窗口内所能处理的最大信元数对数据量进行限制,为多个LSTM层的并行计算和深隐层的拼接层和全连接层预留了计算量的裕
为减小道路阻力变化对驾驶机器人纵向操纵的影响,提出了驾驶机器人纵向操纵的自适应模型预测控制方法.建立了不同操纵模式驾驶机器人车辆耦合模型,基于耦合模型设计了模型预测控制器和模式切换控制器,并采用带遗忘因子的递推最小二乘算法设计道路滚阻系数估计器.通过仿真与试验得出,该控制方法能抵抗道路滚阻系数扰动带来的影响,纵向车速跟踪误差在±2 km/h,实现了精准驾驶机器人纵向操纵.
滚动轴承是机械系统中极易破坏的重要零件,它直接影响机械设备健康质量状况.首先,综述国内外轴承寿命研究的发展趋势和关键问题和滚动轴承疲劳寿命基本理论、寿命计算方法及寿命理论适应性的优劣;然后,概述断裂力学和损伤力学轴承寿命分析研究模型;最后,对损伤力学和断裂力学联合有限元分析进行分析展望,并考虑轴承游隙、变形量、内圈圆度误差对疲劳寿命的影响,提出一种试验与理论相结合、基于力学改进的轴承疲劳寿命分析新思路,希望能对提高轴承疲劳寿命分析预测精度有所借鉴.
对流换热系数(convective heat transfer coefficient,CHTC)是锂离子电池(lithium-ion battery,LIB)热力学仿真过程中的重要参数.在电池热力学仿真过程中,通常将CHTC设置为固定值.尽管可以获得令人满意的仿真结果,但是仿真过程与实际情况不一致,并且不能准确地预测电池放电期间的温升特性.变对流换热系数(variable convective heat transfer coefficient,VCHTC)可以随电池放电而变化,并提高了仿真过程的准确性
特征提取是基于深度学习的立体匹配中至关重要的一个部分.针对目前立体匹配网络在特征提取中造成的语义损失和匹配代价信息丢失问题,将特征金字塔网络作为立体匹配的特征提取部分,提取包含高层语义信息和多尺度信息的多通道特征;并使用改进的群组相关模块计算匹配代价,使网络包含更多的特征相似性信息,减少信息丢失,进而更加准确地重建弱纹理等病态区域.在SceneFlow、KITTI 2012和KITTI 2015双目数据集上进行测试评估,结果表明:提出的算法取得了较好精度,并且相比基准网络,在提高精度和弱纹理区域匹配效果的
为了提高锂离子电池荷电状态(SOC)的估计精度,文中采用基于高斯过程回归(GPR)机器学习的锂离子电池数据驱动方法,首先选取数据集,将电池测量参数电流和电压作为模型的输入向量,SOC作为模型的输出向量来训练模型,为了提高模型精度,文中改进了高斯过程回归模型.将上一时刻估计的SOC值加入到移动窗口中,并与电流和电压一起作为输入向量.通过窗口的大小不断更新训练集,从而训练出高精度SOC估计模型.通过实验采集的数据,并和GPR、最小二乘支持向量机(LSSVM)、支持向量机(SVM)和神经网络(NN)相比,所提模
为了减小栅格环境下机器人规划的路径长度,提高路径规划效率,提出了基于开阔视野蚁群算法的路径规划方法.建立了工作环境的栅格模型,将其转化为机器人可以识别的0-1矩阵模型.分析了传统的4方向搜索蚁群算法和8方向搜索蚁群算法,提出了开阔视野蚁群算法,在该算法中重新定义了视野范围、邻域栅格、可选栅格,并对栅格选择概率进行了适应性改进.与4方向和8方向蚁群算法比,开阔视野蚁群算法的转角分辨率得到了较大提高.在15×15和30×302种规模的栅格环境下,同时使用4方向蚁群、8方向蚁群和开阔视野蚁群算法进行10次路径规
电池荷电状态(SOC)的精确估算是储能设备安全运行的关键,本工作提出一种基于均匀分布策略改进的蝗虫优化算法和BP神经网络(UGOA-BP)的联合算法,在标准蝗虫优化算法(GOA)的基础上,引入了均匀分布函数,更新了非线性控制参数c,构建了新的随机调整机制,扩大了算法搜索范围,打破了局部开发受限的局面.同时,又受粒子群算法思想启发,对每代最优解进行保存记忆,通过选取随机个体引导种群的位置更新,弥补了蝗虫优化算法全局搜索能力弱的局限性,增加了种群多样性.采用某新能源公司储能设备的历史数据,设置电池SOC 10