论文部分内容阅读
针对传统方式检测风力涡轮机表面缺陷时出现的精度不足、泛化性较差问题,提出了一种改进YOLOv5s的风力涡轮机表面缺陷检测模型。在网络结构方面,首先在主干特征提取网络引入改进的MobileNetv3网络,用于协调并平衡模型的轻量化和精度关系;其次采用BiFPN式的融合方式,增强神经网络的多尺度适应能力,提高融合速度和效率;最后为轻量化的自适应调节特征权重,运用ECAnet通道注意力机制,进一步提高神经网络的特征提取能力。在损失函数方面,将边框回归的损失函数修改为αIoU Loss,进一步提升了bbox回归精度。实验结果表明,基于YOLOv5s的改进算法可以在复杂环境下快速准确地识别风机表面的缺陷目标,能够满足实时目标检测的实际应用需求。