论文部分内容阅读
本文讨论在极点配置的约束下,使[P]和[V]·[V-1](条件数)极小化的问题,其中P是(A+BF)'P+P(A+BF)=-2In的工定解,V是A+BF的特征向量矩阵.两种指标都反映了系统鲁棒稳定的程度.通过定义一矩阵函数并引入新的自由变量U,可放松极点配置的约束,并能系统的推导[P]/U及([V]·[V-1])/U,从而将鲁棒设计转化为无约束的梯度法寻优,实例说明,本文设计方法的效果很好.
This paper discusses the problem of minimizing [P] and [V] · [V-1] (condition number) under the pole assignment constraint, where P is the sum of (A + BF) ’P + P (A + BF) = -2In The fixed solution, V is the A + BF eigenvector matrix. Both indicators reflect the degree of robustness and stability of the system. By defining a matrix function and introducing a new free variable U, the pole placement constraints can be relaxed and systemically derived [P] / U and ([V] · [V-1]) /U, The rod design is transformed into an unconstrained gradient method, and the example shows that the design method in this paper works well.