基于Kolmogorov复杂性的文本聚类算法改进

来源 :计算机科学 | 被引量 : 0次 | 上传用户:wind503
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于Kolmogorov复杂性的聚类算法虽然具有普适性、参数无关性的优点,但是应用到文本内容语义信息聚类时往往准确率较低。针对这一问题,提出了一种基于特征扩展的文本聚类改进算法——DEF-KC算法。该算法通过引用百度百科中特定词条的信息,对预处理过的文本中的关键词进行特征扩展,从而提高特征词的主题贡献度,增强文本的结构辨识度,并通过选取特定压缩算法近似计算Kolmogorov复杂性得到文本相似度,最后使用谱聚类算法进行聚类。实验结果表明,与传统的基于Kolmogorov复杂性的文本聚类算法相比,使用该算法
其他文献
随着移动互联网的迅猛发展,移动应用的数量呈现井喷式的爆发,对其性能、故障和短板进行实时、有效的监测与分析是保证系统正常运行的关键。统一建模语言(Unified Modeling Lan