论文部分内容阅读
基于Kolmogorov复杂性的聚类算法虽然具有普适性、参数无关性的优点,但是应用到文本内容语义信息聚类时往往准确率较低。针对这一问题,提出了一种基于特征扩展的文本聚类改进算法——DEF-KC算法。该算法通过引用百度百科中特定词条的信息,对预处理过的文本中的关键词进行特征扩展,从而提高特征词的主题贡献度,增强文本的结构辨识度,并通过选取特定压缩算法近似计算Kolmogorov复杂性得到文本相似度,最后使用谱聚类算法进行聚类。实验结果表明,与传统的基于Kolmogorov复杂性的文本聚类算法相比,使用该算法