论文部分内容阅读
针对裂步Fourier传播算子在速度强横向变化介质中的不足,将算子的框架展开方法应用于Fourier传播算子中的相移算子,提出了一种波场传播的局部裂步Fourier传播算子,并把它应用于波动方程叠前深度偏移成像.这个局部裂步Fourier传播算子是由相空间(空间-波数)-频率域的相移算子和空间-频率域的窗口时移算子两部分组成.与波数-频率域的空间全局性相移算子不同,相空间-频率域的相移算子具有很好的空间局部性.通过在国际标准的SEG-EAGE二维盐丘模型的波动方程叠前深度偏移成像数值试验,证明局部Fourier传播算子不仅具有很好的稳定性,而且还特别适用于速度强横向变化介质.
In order to overcome the shortcomings of the cracked Fourier propagator in the medium with strong velocity variation, the frame expansion method of the operator is applied to the phase shift operator in the Fourier propagator. A local cracked Fourier propagation Operator and apply it to the wave equation prestack depth migration imaging.The local cracked Fourier propagation operator is composed of a phase-shift operator in the phase space (space-wavenumber) -domain and a window in the space-frequency domain Shift operator is composed of two parts.Compared with the global phase shift operator in the wavenumber-frequency domain, the phase-shift operator in the phase space-frequency domain has good spatial locality.Based on the international standard SEG-EAGE two-dimensional Salt Lake model wave equation prestack depth migration imaging numerical experiments prove that the local Fourier propagation operator not only has good stability, but also particularly suitable for high speed transverse variation medium.