论文部分内容阅读
由于肝脏的大小、形状因人而异,且CT影像中肝脏与其毗邻器官的灰度对比值较低,难以精准地判断肝脏影像的边界信息。为此,提出一种基于全卷积神经网络(FCN)的改进算法,在FCN的基础上引入残差和VGG-16网络,得到肝脏影像的初始分割结果。引入批归一化和PReLU激活函数,提高网络的泛化能力和收敛速度。采用条件随机场方法,进一步优化分割结果,提高分割准确率。通过VTK和ITK系统对二维肝脏影像进行三维重建。在3DIRCADb数据集上的实验结果验证了该算法的有效性和高效性。