论文部分内容阅读
以180幅木材样本图片为对象,研究以小波变换方法提取特征参数,分析几种小波基的特点和性质,最终以对称性为依据,选择使用sym4小波对图像进行二级小波分解,可以得到一级水平细节HL1、垂直细节LH1、对角细节HH1,二级的近似LL2、水平细节HL2、垂直细节LH2、对角细节HH2共7个子图,提取整幅图像的熵和每个子图小波系数的均值及标准差作为特征参数。将木材纹理按照直纹、抛物线和乱纹3种纹理的分类标准,以BP神经网络作为分类器进行了木材纹理分类的验证,并与灰度共生矩阵的方法进行了对比。试验表明:采用小