论文部分内容阅读
波长选择是光谱建模分析的重要步骤。研究了近红外光谱法分析油页岩含油率过程中的波长选择方法,用以剔除光谱数据中的冗余信息和干扰信息,提高分析模型的建模效率和预测能力。分别采用相关系数法(CC)、移动窗口偏最小二乘法(MWPLS)和无信息变量消除法(UVE)对油页岩近红外漫反射光谱数据的波长区间进行了选择,研究了不同阈值、窗口宽度和噪声矩阵对上述方法的影响,建立了所选择波长处的反射率数据和样品含油率标准值间的偏最小二乘(PLS)分析模型,比较了上述方法的选择效果。结果表明:与使用全谱数据建模相比,采用上述方法筛选过的光谱数据均能提高模型的建模效率和预测能力,其中经UVE法筛选后的光谱数据仅占全谱数据总数的22.8%,模型的RMSECV却降低了9.3%,RMSEP降低了4.5%。