论文部分内容阅读
针对尚缺乏识别准确率高的铁路集装箱箱号OCR系统这一现实,设计了一套识别准确率能够达到98%以上的铁路集装箱箱号OCR系统。该系统对采集到的图像进行字符的自动分割,在训练CNN时针对目前数据集多样性不足、样本较少的情况,采用了数据增强的方法扩充数据集,并且基于LeNet-5进行了网络结构搜索,训练了分别用于数字和字母识别的卷积神经网络Digit Net和Letter Net,其在测试集上的识别准确率分别能够达到99.7%和99.2%。