论文部分内容阅读
近年来,全国多数地市的中招考试都有找规律的题目,人们开始逐渐重视这一类数学题,研究发现数学规律题的解题思想,不但能够提高学生的考试成绩,而且更有助于创新型人才的培养。但究竟怎样才能把这种题目做好,是一个值得探究的问题,这类问题没有明确的知识方法可套,在现在的教科书上也很少触及这类问题。这类题目主要考查学生的综合分析问题和解决问题的能力。下面就解决这类问题作一个初步的探究。
1 代数中的规律
“有比较才有鉴别”。通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。揭示的规律,常常包含着事物的序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
2 平面图形中的规律
图形变化也是经常出现的。做这种数学规律的题目,都会涉及到一个或者几个变化的量。所谓找规律,多数情况下,是指变量的变化规律。所以,抓住了变量,就等于抓住了解决问题的关键。
例5:平面内的一条直线可以将平面分成两个部分,两条直线最多可以将平面分成四个部分,三条直线最多可以将平面分成七个部分……根据以上这些直线划分平面最初的具体的情况总结规律,探究十条直线最多可以将平面分成多少个部分。
分析:①条直线将平面分成2个部分;②条直线最多可以将平面分成4(=2+2)个部分;③条直线最多可以将平面分成7(=4+3)个部分;④条直线最多可以将平面分成11(=7+4)个部分。可以从中发现每增加1条直线,分平面的部分数就增加,其规律是若原有(n-1)条直线,现增加1条直线,最多将平面分成的平面数就增加n,平面上的10条直线最多将平面分成:2+2+3+4+5+6+7+8+9+10=56个部分。一般的平面上的n条中线最多可将平面分成(2+2+3+4+…+n)个部分。
分析:先观察每个图形中有几个小正方体,然后发现每个正方体中看不到的正方体的个数是前面图形的正方体的个数,因此,第⑥个图中,看不见的小立方体有53=125个。因此,读者在遇到数学问题时应身临其境,从不同的角度去观察,去分析,用最简单的方法去解决。
1 代数中的规律
“有比较才有鉴别”。通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。揭示的规律,常常包含着事物的序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
2 平面图形中的规律
图形变化也是经常出现的。做这种数学规律的题目,都会涉及到一个或者几个变化的量。所谓找规律,多数情况下,是指变量的变化规律。所以,抓住了变量,就等于抓住了解决问题的关键。
例5:平面内的一条直线可以将平面分成两个部分,两条直线最多可以将平面分成四个部分,三条直线最多可以将平面分成七个部分……根据以上这些直线划分平面最初的具体的情况总结规律,探究十条直线最多可以将平面分成多少个部分。
分析:①条直线将平面分成2个部分;②条直线最多可以将平面分成4(=2+2)个部分;③条直线最多可以将平面分成7(=4+3)个部分;④条直线最多可以将平面分成11(=7+4)个部分。可以从中发现每增加1条直线,分平面的部分数就增加,其规律是若原有(n-1)条直线,现增加1条直线,最多将平面分成的平面数就增加n,平面上的10条直线最多将平面分成:2+2+3+4+5+6+7+8+9+10=56个部分。一般的平面上的n条中线最多可将平面分成(2+2+3+4+…+n)个部分。
分析:先观察每个图形中有几个小正方体,然后发现每个正方体中看不到的正方体的个数是前面图形的正方体的个数,因此,第⑥个图中,看不见的小立方体有53=125个。因此,读者在遇到数学问题时应身临其境,从不同的角度去观察,去分析,用最简单的方法去解决。