论文部分内容阅读
The HJ-1A satellite was successfully launched on September 6, 2008. The inclusion of a HyperSpectral Imager (HSI) as one of the payloads of the HJ-1A Satellite is a major milestone in the field of the remote sensing in China. It is also the first Fourier transform imaging spectrometer routinely used to acquire scientific data from a satellite orbiting Earth. This paper briefly introduces the basic imaging theories of the spatially modulated Fourier transform imaging spectrometer, and then discusses the theoretical analysis and algorithms of spectrum reconstruction. Results of the operational spectrum reconstruction for the raw data of the HJ-1A satellite Fourier transform HSI are presented. At present, the algorithms and processing flow have been used successfully in the Ground Data Processing System (GDPS) built by the China Center for Resource Satellite Data and Applications (CRESDA).
The HJ-1A satellite was successfully launched on September 6, 2008. The inclusion of a HyperSpectral Imager (HSI) as one of the payloads of the HJ-1A Satellite is a major milestone in the field of the remote sensing in China. It is also the first Fourier transform imaging spectrometer routinely used to acquire scientific data from a satellite orbiting Earth. This paper briefly introduces the basic imaging theories of the spatially modulated Fourier transform imaging spectrometer, and then discusses the theoretical analysis and algorithms of spectrum reconstruction. The operational spectrum reconstruction for the raw data of the HJ-1A satellite Fourier transform HSI are presented. The At present, the algorithms and processing flow have been used successfully in the Ground Data Processing System (GDPS) built by the China Center for Resource Satellite Data and Applications (CRESDA).