论文部分内容阅读
It is well known that narrow slit may be used as acoustical element. The exact formulae of the acoustical impedance of a narrow slit and its low-frequency approximation are available. The theory of slit is extended and a simple and practical formula is derived for the single slit. It is found that the resistance- to- reactance ratio of the slit increases to larger than one when the slit width is decreased to submillimeter range, and a panel with extremely narrow slits plus a back cavity will make an absorber with good absorption in a wide frequency range, without any porous or fibrous material. A complete theory of the microslit absorber (MSA) is, thus, presented and its absorption characteristics discussed. It is found that the MSA has essentially the same formulae as the microperforate absorber (MPA), except that the numerical coefficient of the resistance is smaller and the end correction for the mass reactance is larger for the MSA, resulting a performance inferior to that of MPA, ordinarily. Measures are proposed to compensate for these.
The exact formula of the acoustical impedance of a narrow slit and its low-frequency approximation are available. The theory of slit is extended and a simple and practical formula is derived for the single slit. It is found that the resistance-to- reactance ratio of the slit increases to larger than one when the slit width is decreased to submillimeter range, and a panel with extremely narrow slits plus a back cavity will make an absorber with good absorption in a wide frequency range, without any porous or fibrous material. A complete theory of the microslit absorber (MSA) is, thus, presented and its absorption characteristics discussed. It is found that the MSA has essentially the same formula as the microperforate absorber ( MPA) except that the numerical coefficient of the resistance is smaller and the end correction for the mass reactance is larger for the MSA, resulting a performance inferior to that of MPA, ordinarily. Measures are proposed to compensate for these.