论文部分内容阅读
Hybrid wavelength-division-multiplexing(WDM)/time-division-multiplexing(TDM) ethernet passive optical networks(EPONs) can achieve low per-subscriber cost and scalability to increase the number of subscribers. This paper discusses dynamic wavelength and bandwidth allocation(DWBA) algorithm in hybrid WDM/TDM EPONs.Based on the correlation structure of the variable bit rate(VBR) video traffic,we propose a quality-ofservice (QoS) supported DWBA using adaptive linear traffic prediction.Wavelength and timeslot are allocated dynamically by optical line terminal(OLT) to all optical network units(ONUs) based on the bandwidth requests and the guaranteed service level agreements(SLA) of all ONUs.Mean square error of the predicted average arriving rate of compound video traffic during waiting period is minimized through Wiener-Hopf equation.Simulation results show that the DWBA-adaptive-linear-prediction(DWBA-ALP) algorithm can significantly improve the QoS performances in terms of low delay and high bandwidth utilization.
Hybrid wavelength-division-multiplexing (WDM) / time-division-multiplexing (TDM) ethernet passive optical networks (EPONs) can achieve low per-subscriber cost and scalability to increase the number of subscribers. This paper discusses dynamic wavelength and bandwidth allocation ( DWBA) algorithm in hybrid WDM / TDM EPONs.Based on the correlation structure of the variable bit rate (VBR) video traffic, we propose a quality-of service (QoS) supported DWBA using adaptive linear traffic prediction. Wavelength and timeslot are allocated dynamically by optical line terminal (OLT) to all optical network units (ONUs) based on the bandwidth requests and the guaranteed service level agreements (SLA) of all ONUs.Mean square error of the predicted average arriving rate of compound video traffic during waiting period is minimized through Wiener-Hopf equation. Simulation results show that the DWBA-adaptive-linear-prediction (DWBA-ALP) algorithm can significantly improve the QoS profiles in terms of low delay and h igh bandwidth utilization.