横向高频放电激发He-Cd激光器的最佳条件

来源 :激光与光电子学进展 | 被引量 : 0次 | 上传用户:hawking415
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
研究了高频横向激发的He-Cd激光器的输出特性与供给放电的功率值、缓冲气体气压和镉蒸气气压的依赖性。对于这类激光器首次在谱线441.6、533.7和537.8亳微米上获得饱和的输出功率,并找到最佳激发条件。用各种直径放电管进行的实验,可建立起类似的输出特性和激发条件的关系。在波长441.6亳微米上,对于这种跃迁所得到的创纪录功率为每厘米激活长度1.5亳瓦。
其他文献
采用平凹短腔及V型折叠腔,研究了激光二极管端面抽运的Nd:Gd0.42Y0.58VO4激光器1.06mm及倍频532nm的输出特性。在输入抽运功率为11.05 W时,获得了1.06mm的最大平均输出功率为5.35 W,光-光转换效率达到48.42%;在输入抽运功率为6.8 W时,采用连续抽运和脉冲抽运分别获得了1.44 W和1.64 W的绿光输出,光-光转换效率分别为21.2%和24.1%。
本文提出并采用非对角化的分析法研究无源空心波导谐振腔横模模式间的竞争与转换。从计算EH_(1m)类波导本征模在腔内的转换矩阵中发现:在模式的传输过程中,存在着横模模式间的相互转换,而且其互换的能量不相等。在一定的腔设计条件下,会出现高阶横模向低阶横模的能量净流动,这有利于谐振腔横模模式的选择和基模输出功率的提高。
为满足红外探测系统无热化、高质量成像的需求,在非球面硫系玻璃基底制备3.7~4.8 μm波段增透膜。根据试验要求选取黏结层材料,提高基板与薄膜之间的附着力;利用有限元分析法通过多物理场仿真软件,将温度场与热应力场相结合建立三维模型,分析非球面薄膜的应力分布情况。根据模拟结果对沉积工艺进行优化,采用温度梯度烘烤法降低硫系玻璃基底的热应力,并采用真空原位退火法释放沉积薄膜的应力,解决非球面镜的脱膜问题。所制备的薄膜可以通过MIL-C-48497A标准中的附着力、湿度、中度摩擦等测试,并在3.7~4.8 μm波
利用皮秒激光器在镍铝青铜合金表面制备了具有不同微观形貌的微纳米复合结构,再通过硬脂酸进行表面修饰。采用扫描电镜和X射线衍射仪等表征了所得表面的形貌和化学成分。研究结果表明,经皮秒激光加工和硬脂酸修饰后,表面的接触角都达到150°以上。不同的脉冲能量密度下,试样表面的微观形貌和润湿性不同。随着脉冲能量密度的增大,修饰后的试样表面的滚动角逐渐减小,当脉冲能量密度为6.85 J/cm 2时,滚动角减小到7°,随着脉冲能量密度的进一步增加,滚动角又逐渐增大。耐蚀性测试结果
用1 064nm激光实验研究了HfO2/SiO2薄膜的激光损伤增强效应,实验以薄膜激光损伤阈值70%的激光能量开始,采用N-ON-1方式处理薄膜,激光脉冲的能量增量为5J/cm2.实验结果表明,激光处理薄膜表面能使激光损伤阈值平均提高到3倍左右,并且薄膜的损伤尺度也明显减小.对有缺陷的薄膜,其缺陷经低能量激光后熔和消除,其抗激光损伤能力得到增强,但增强得并不显著,而薄膜本身的激光预处理,可以使其激光损伤阈值大大提高.
借“光学-80”国际讨论会在匈牙利首都布达佩斯召开之机,又得到匈方科学家的友好邀清和安排,我们参观了匈科学院中央物理所、技术物理所、生物研究中心及布达佩斯工业大学的全息实验室。归途中经罗马尼亚又顺访了罗物理中心,仔细参观了他们有关激光与激光材料的研究部门。本文中我们把参观内容加以整理作一介绍。
期刊
提出了一种基于模糊不变卷积神经网络(BICNN)模型的目标识别方法。与传统卷积神经网络(CNN)模型不同,BICNN引入了一种新的模糊不变层。BICNN通过增加模糊不变约束项及正则化来优化模糊不变目标函数并进行训练;通过减小模糊不变目标函数值,使得训练样本在模糊前后的特征映射一致,最终实现模糊不变性。测试结果表明,BICNN解决了模糊造成的识别率低的问题,增大了运动模糊图像的识别率。
We propose a modified-Viterbi and Viterbi phase estimation (VVPE) carrier phase recovery scheme that shows an effective capability of reducing the frequent and accumulated cycle slips induced by inter-symbol interference (ISI) in a faster-than-Nyquist (FT
We propose schemes for the efficient information transfer between a propagating photon and a quantum-dot (QD) spin qubit in an optical microcavity that have no auxiliary particles required. With these methods, the information transfer between two photons
In order to realize single emissive white phosphorescent organic light-emitting devices (PHOLEDs) with three color phosphorescent dopants (red, green, and blue), the energy transfer between the host material and the three dopants, as well as the among the