论文部分内容阅读
B样条曲线拟合应用于绘制离散数据点的变化趋势,一般采用数据逼近或者迭代的方法得到,是图像处理和逆向工程中的重要内容。针对待拟合曲线存在多峰值、尖点、间断等问题,提出一种基于遗传算法的B样条曲线拟合算法。首先利用惩罚函数将带约束的曲线优化问题转换为无约束问题,然后利用改进的遗传算法来选择合适的适应度函数,再结合模拟退火算法自适应调整节点的数量和位置,在寻优的过程中找到最优的节点向量,持续迭代直到产生最终的优良重建曲线为止。实验结果表明,该算法有效地提高了精度并加快了收敛速度。