论文部分内容阅读
好友推荐是基于位置的社交网络LBSN(Location-Based Social Networks)的重要服务之一。融合线上关系和线下行为,考虑位置偏好相似性、距离相似性和熟识度三个特征,构建新的好友推荐算法。通过考虑时间因素和排除时间因素两方面计算位置偏好的相似性;通过探究用户与其好友间签到地点在距离上的关系计算距离相似性;使用阶数与路数作为影响好友关系的重要因素计算熟识度;对以上三个特征进行加权并融合用户影响力计算最终推荐分数。利用Gowalla上的数据证明该算法可以有效提高好友推荐的有效性。