论文部分内容阅读
为提升Hadoop集群在异构环境下处理硬实时作业的性能,提出一种基于历史进度自动调整作业优先级的调度算法(HAPS)。该算法实时监控作业进度信息,对作业进度率进行指数平滑预测,计算作业剩余执行时间,动态估算作业空闲时间。并据此实时更新作业队列中作业的优先级顺序,优先调度空闲时间小的作业。实验结果表明,HAPS有效地提高了异构环境下硬实时作业的执行成功率。