论文部分内容阅读
双聚类(Biclustering)算法是一种横向纵向同时进行的数据挖掘的聚类算法,主要用于生物信息学上对高维复杂的数据进行聚类,以平均平方残基作为筛选标准,贪婪迭代的方法来选取数据.传统双聚类算法聚出来的簇通常不是预想的结果,迭代次数越多偏差就越大,对于庞大的数据精确度会更小,而模糊集理论可以改进这种迭代产生偏差与得不蓟预想结果的不足.为了获得更加好的实验结果,用模糊数学中的隶属矩阵和综合评判等方法改进双聚类的算法,使得聚类结果更精确更具有一致性,便于发现数据的关联性.