论文部分内容阅读
【摘 要】详述了我输电线路管理部门充分运用雷电定位系统对110kV城大线雷击跳闸故障段进行推断,并结合输电线路跳闸信息进行细致测算,根据可能故障段的运行环境及跳闸时天气状况进行综合分析,准确地判断定位故障点,快速查找出雷击故障杆塔。
【关键词】雷电定位系统;跳闸故障;分析
2011年06月20日14:01:46,110kV城大线跳闸,线路重合闸成功合闸。我部门迅速组织线路运维人员对该跳闸故障进行分析,主要从雷电定位系统的数据、跳闸信息、线路运行环境及跳闸时天气状况等多方面进行仔细论证与综合推断故障区段,最后快速地查找出故障杆塔;体现了雷电电位系统的优越性,提高了工效,保证了线路安全运行。
1.判断故障点位置
1.1根据雷电定位系统进行初步分析
通过查看雷电定位系统雷电信息输出区,110kV城大线#88-#89塔、#99-#101塔附近有雷电活动,且线路路径地图上显示这两处落雷密度较大。从落雷时间看,#88-#89塔附近雷电发生时间为2011年6月20日14:00:06,与该线路跳闸时间相差1分40秒,超出雷电定位系统“时间缓冲区”的误差范围;而#99-#101塔附近雷电发生时间与线路跳闸时间基本吻合,因此更有可能引起本次跳闸故障。另外,#99-#100塔附近雷电回击数比#100-#101塔的回击次数多,且与雷电发生点的距离更近。因此,#99-#100塔成为故障杆塔的可能性较大。
表一 雷电信息输出表
根据110kV城大线近三年跳闸情况的统计分析,可发现约90%跳闸次数为雷击反击跳闸。#99-#100塔的雷电流幅值为-183.7kA,远远超过了该线路的耐雷水平,线路遭受雷击反击跳闸可能性较大;而#100-#101塔遭受雷击的雷电流幅值为-64.9kA,小于该线路的耐雷水平,符合雷击绕击的特点。因此,#99-#100塔将成为我们故障巡视的重点区段。
表二 110kV 城大线2008-2010年跳闸故障类别统计表
110 kV城大线C相跳闸后,线路重合闸重合成功,可见本次故障为单相瞬时性接地故障,符合雷击线路跳闸的瞬时性特点。另结合该线路当年4月、5月份状态巡视缺陷记录表单,证实该线路通道状况良好,且#99-#101塔区段为非树木速长区,显然排除了风偏引起线路瞬时跳闸的可能,进一步证实了雷击跳闸可能性较大。
1.2结合调度提供跳闸信息进行判断
根据调度部门提供的跳闸信息分析,110kV城南变电站保护装置显示110kV城大线保护测距和故障录波测距分别为44.25km、44.90km,保护测距和故障录波测距十分接近,且均位于#98-#101塔之间,进一步排除了#88-#89塔为故障杆塔的可能性。根据表三保护动作情况和故障相别可推断C相瞬时接地短路引起线路跳闸。
表三 110kV城大线跳闸情况表
从表四可以看出, #98-#101塔位于本线路全长82%-84.5%的范围内,符合距离Ⅱ段保护80%-100%的全长范围;而#88-#89塔位于线路全长75.5%范围内。因此,#99-#101塔作为故障段更趋于合理性。
表四 杆塔位置占线路全长的百分比
1.3利用线路运行环境及气象进行综合分析
根据线路平断面图、杆位明细表及相关图纸资料,可知110kV城大线线路全线架设双避雷线,保护角为13.92°,直线塔悬垂串均为8片XP-70型绝缘子,#99-#100塔杆位处的主要土壤均为硬塑粉质土与中等风化强风化粉砂岩及泥岩互层。其中,#100塔为直线塔,塔型为ZB18,呼高为30米,位于山腰,旁边有一深水沟渠,C相为右边导线且处在迎风侧,大号侧、小号侧及塔顶安装有防绕击避雷针,可见该塔所处的环境易遭受雷击,因已加装防雷装置可知反击可能性远远大于绕击。#101塔塔型为ZM2,呼高为30米,位于山腰,未安装防雷装置;#99塔塔型为ZB17,呼高为21米,位于平地,且A、C相均安装氧化锌避雷器。根据线路的运行环境,可推测#100塔为故障杆塔的可能性较大。通过电话询问#100塔附近村民,得知跳闸时刻该区域出现过强烈的雷雨天气,再次证明了雷击概率较大。
综合分析,本次故障原因是110kV 城大线C相雷击造成线路反击跳闸,故障区段可能为#99-#101塔。
2.故障查找
2.1找出故障点
2011年06月20日16:30,线路运维人员对110kV城大线#99-#101塔区段进行故障查找,发现#100塔C相自导线侧起第1、4、7、8片玻璃绝缘子上有明显的闪络痕迹,同时该相悬垂线夹两侧约30cm范围内有明显的白色斑点,导线无断股现象。
现场测量#100塔的接地电阻值,发现A腿接地电阻值偏大,远远超出设计要求值。因此,进一步确认本次故障类型为雷击杆顶反击跳闸。
#100塔接地装置型号为7DT,埋深为0.8米,季节系数可取1.3,根据测量结果等于实测值与季节系数的乘积,可知A腿接地电阻值大于设计要求值,是引起线路反击跳闸的直接原因。
表五 #100塔接地电阻设计值与测量结果对照表单位: Ω
2.2擴大查找范围
为了不留下隐患,线路运维人员对110kV城大线#99塔、#101塔C相绝缘子进行了检查,未发现闪络现象。同时还对#99-#100塔、#100 -#101塔两档导地线及悬垂线夹进行了检查,均未发现雷电流通道痕迹,且#99塔、#101塔接地电阻均满足设计要求。
【参考文献】
[1]王清葵.送电线路运行和检修[M].北京:中国电力出版社,2003.
[2]董振亚.电力系统的过电压保护[M].北京:中国电力出版社,1997:108-150.
[3]中华人民共和国水利电力部.SDJ8-79电力设备接地设计技术规程[S].水利电力出版社,1979.
[4]丁毓山,金开宇.配电线路职业技能鉴定培训教材[M].北京:中国水利水电出版社,2003.
[5]中华人民共和国电力工业部.DL/T620-97交流电气装置的过电压保护和绝
缘配合.中国电力出版社,2004.
【关键词】雷电定位系统;跳闸故障;分析
2011年06月20日14:01:46,110kV城大线跳闸,线路重合闸成功合闸。我部门迅速组织线路运维人员对该跳闸故障进行分析,主要从雷电定位系统的数据、跳闸信息、线路运行环境及跳闸时天气状况等多方面进行仔细论证与综合推断故障区段,最后快速地查找出故障杆塔;体现了雷电电位系统的优越性,提高了工效,保证了线路安全运行。
1.判断故障点位置
1.1根据雷电定位系统进行初步分析
通过查看雷电定位系统雷电信息输出区,110kV城大线#88-#89塔、#99-#101塔附近有雷电活动,且线路路径地图上显示这两处落雷密度较大。从落雷时间看,#88-#89塔附近雷电发生时间为2011年6月20日14:00:06,与该线路跳闸时间相差1分40秒,超出雷电定位系统“时间缓冲区”的误差范围;而#99-#101塔附近雷电发生时间与线路跳闸时间基本吻合,因此更有可能引起本次跳闸故障。另外,#99-#100塔附近雷电回击数比#100-#101塔的回击次数多,且与雷电发生点的距离更近。因此,#99-#100塔成为故障杆塔的可能性较大。
表一 雷电信息输出表
根据110kV城大线近三年跳闸情况的统计分析,可发现约90%跳闸次数为雷击反击跳闸。#99-#100塔的雷电流幅值为-183.7kA,远远超过了该线路的耐雷水平,线路遭受雷击反击跳闸可能性较大;而#100-#101塔遭受雷击的雷电流幅值为-64.9kA,小于该线路的耐雷水平,符合雷击绕击的特点。因此,#99-#100塔将成为我们故障巡视的重点区段。
表二 110kV 城大线2008-2010年跳闸故障类别统计表
110 kV城大线C相跳闸后,线路重合闸重合成功,可见本次故障为单相瞬时性接地故障,符合雷击线路跳闸的瞬时性特点。另结合该线路当年4月、5月份状态巡视缺陷记录表单,证实该线路通道状况良好,且#99-#101塔区段为非树木速长区,显然排除了风偏引起线路瞬时跳闸的可能,进一步证实了雷击跳闸可能性较大。
1.2结合调度提供跳闸信息进行判断
根据调度部门提供的跳闸信息分析,110kV城南变电站保护装置显示110kV城大线保护测距和故障录波测距分别为44.25km、44.90km,保护测距和故障录波测距十分接近,且均位于#98-#101塔之间,进一步排除了#88-#89塔为故障杆塔的可能性。根据表三保护动作情况和故障相别可推断C相瞬时接地短路引起线路跳闸。
表三 110kV城大线跳闸情况表
从表四可以看出, #98-#101塔位于本线路全长82%-84.5%的范围内,符合距离Ⅱ段保护80%-100%的全长范围;而#88-#89塔位于线路全长75.5%范围内。因此,#99-#101塔作为故障段更趋于合理性。
表四 杆塔位置占线路全长的百分比
1.3利用线路运行环境及气象进行综合分析
根据线路平断面图、杆位明细表及相关图纸资料,可知110kV城大线线路全线架设双避雷线,保护角为13.92°,直线塔悬垂串均为8片XP-70型绝缘子,#99-#100塔杆位处的主要土壤均为硬塑粉质土与中等风化强风化粉砂岩及泥岩互层。其中,#100塔为直线塔,塔型为ZB18,呼高为30米,位于山腰,旁边有一深水沟渠,C相为右边导线且处在迎风侧,大号侧、小号侧及塔顶安装有防绕击避雷针,可见该塔所处的环境易遭受雷击,因已加装防雷装置可知反击可能性远远大于绕击。#101塔塔型为ZM2,呼高为30米,位于山腰,未安装防雷装置;#99塔塔型为ZB17,呼高为21米,位于平地,且A、C相均安装氧化锌避雷器。根据线路的运行环境,可推测#100塔为故障杆塔的可能性较大。通过电话询问#100塔附近村民,得知跳闸时刻该区域出现过强烈的雷雨天气,再次证明了雷击概率较大。
综合分析,本次故障原因是110kV 城大线C相雷击造成线路反击跳闸,故障区段可能为#99-#101塔。
2.故障查找
2.1找出故障点
2011年06月20日16:30,线路运维人员对110kV城大线#99-#101塔区段进行故障查找,发现#100塔C相自导线侧起第1、4、7、8片玻璃绝缘子上有明显的闪络痕迹,同时该相悬垂线夹两侧约30cm范围内有明显的白色斑点,导线无断股现象。
现场测量#100塔的接地电阻值,发现A腿接地电阻值偏大,远远超出设计要求值。因此,进一步确认本次故障类型为雷击杆顶反击跳闸。
#100塔接地装置型号为7DT,埋深为0.8米,季节系数可取1.3,根据测量结果等于实测值与季节系数的乘积,可知A腿接地电阻值大于设计要求值,是引起线路反击跳闸的直接原因。
表五 #100塔接地电阻设计值与测量结果对照表单位: Ω
2.2擴大查找范围
为了不留下隐患,线路运维人员对110kV城大线#99塔、#101塔C相绝缘子进行了检查,未发现闪络现象。同时还对#99-#100塔、#100 -#101塔两档导地线及悬垂线夹进行了检查,均未发现雷电流通道痕迹,且#99塔、#101塔接地电阻均满足设计要求。
【参考文献】
[1]王清葵.送电线路运行和检修[M].北京:中国电力出版社,2003.
[2]董振亚.电力系统的过电压保护[M].北京:中国电力出版社,1997:108-150.
[3]中华人民共和国水利电力部.SDJ8-79电力设备接地设计技术规程[S].水利电力出版社,1979.
[4]丁毓山,金开宇.配电线路职业技能鉴定培训教材[M].北京:中国水利水电出版社,2003.
[5]中华人民共和国电力工业部.DL/T620-97交流电气装置的过电压保护和绝
缘配合.中国电力出版社,2004.