论文部分内容阅读
针对图像隐写分析难度大、现有的检测模型难以对图像隐写区域进行针对性检测的问题,提出了一种基于显著性检测的图像隐写分析方法。该方法利用显著性检测技术引导隐写分析模型更加关注图像隐写区域的特征。首先,显著性检测模块生成图像的显著性区域;其次,区域筛选模块筛选出与隐写区域重合度较高的显著性图,利用图像融合技术与原始图像进行融合;最后,用相应的显著性融合图替换检测错误的图像,提高训练集质量,从而提升模型的训练效果和检测能力。实验使用BOSSbase1.01数据集,分别用空域和JPEG域的自适应隐写算法对数据