论文部分内容阅读
Deformation resulting from residual stress has been a significant issue in machining. As allowance allocation can directly impact the residual stress on part deformation, it is essential for deformation control. However, it is difficult to adjust allowance allocation by traditional simulation methods based on residual stress, as the residual stress cannot be accurately measured or predicted, and many unexpected factors during machining process cannot be simulated accurately. Different from traditional methods, this paper proposes an allowance allocation method based on dynamic approximation via online inspection data for deformation control of structural parts. An Autore-gressive Integrated Moving Average (ARIMA) model for dynamic allowance allocation is estab-lished so as to approach the minimum deformation, which is based on the in-process deformation inspection data during the alternative machining process of upside and downside. The effectiveness of the method is verified both by simulation cases and real machining experiments of aircraft structural parts, and the results show that part deformation can be significantly reduced.