论文部分内容阅读
目的探讨神经网络的深度学习方法,进行颞骨CT内面神经、迷路及听骨结构的自动化分割的可行性和精确性。方法选择常规颞骨CT检查患者的数据,随机分为两组,一组为训练集(20例),另一组为测试集(5例)。在上述颞骨CT中采用手工分割的方法,分割出迷路、听骨及面神经结构。选择三维卷积神经网络3D U-Net作为深度学习中的神经网络结构部分,通过对训练集的训练,得到该网络的平均精度。用该网络模型对5组测试集中的不同解剖标志自动分割的结果与手工分割的结果进行测试,分别获得面神经、迷路及听小骨的测试精度。并将上述精