【摘 要】
:
人类的进步、科技的发展离不开人才的培养,而创新思维是现代化人才必备的基本条件之一.文章认为创新思维的培养措施有:培养问题意识,启发创新思维;鼓励自主探究,激发创新思维;开展实践活动,诱导创新思维;利用变式教学,形成创新思维.
【机 构】
:
江苏省南京市第二十九中学 210000
论文部分内容阅读
人类的进步、科技的发展离不开人才的培养,而创新思维是现代化人才必备的基本条件之一.文章认为创新思维的培养措施有:培养问题意识,启发创新思维;鼓励自主探究,激发创新思维;开展实践活动,诱导创新思维;利用变式教学,形成创新思维.
其他文献
在小学数学教学中培养学生的创造性思维能力,需要紧紧围绕思维这一本质来设计所要探讨的具体数学问题,要引导学生学会借助数形结合思想和方式来思考,要统筹培养学生的发散性思维和聚合性思维,要注重从日常积累中启发培养学生的创造灵感,更要鼓励学生质疑,营造一种真诚、和谐的课堂氛围.
In this paper,we prove the uniqueness of the Lp Minkowski problem for q-torsional rigidity with p > 1 and q > 1 in smooth case.Meanwhile,the Lp Brunn-Minkowski inequality and the Lp Hadamard variational formula for q-torsional rigidity are established.
A continuous time and mixed state branching process is constructed by a scaling limit theorem of two-type Galton-Watson processes.The process can also be obtained by the pathwise unique solution to a stochastic equation system.From the stochastic equa-tio
巧用操作活动直观引导学生学习数学,可以正确地建立新知的表象,进而实现思维的可持续发展,积累数学基本活动经验.鉴于此,教师需组织好各种操作活动,引导学生在操作的过程中经历、体验和品味,真正地从亲身经历走向“经验”,从而积累有效的数学基本活动经验.
对角互补四边形模型是初中重要的几何模型,该模型总体上可分为两大类型,即90°的对角互补模型和120°的对角互补模型.利用模型特性可推得关于角平分、线段关系和几何面积等的一些结论以及模型中的四个顶点共圆.文章将深入解读模型,结合实例应用模型,并对模型进行拓展探究,从而提出相应的教学建议.
In this paper,we prove the existence of positive solutions to the following weighted fractional system involving distinct weighted fractional Laplacians with gradient terms:{(-△)α/2α1u1(x) =uq111 (x) + uq122 (x) + h1(x,u1(x),u2(x),▽u1(x),▽u2(x)),x ∈ Ω,(-△
We prove the global existence and exponential decay of strong solutions to the three-dimensional nonhomogeneous asymmetric fluid equations with nonnegative density pro-vided that the initial total energy is suitably small.Note that although the system deg
The precise Lp norm of a class of Forelli-Rudin type operators on the Siegel upper half space is given in this paper.The main result not only implies the upper Lp norm estimate of the Bergman projection,but also implies the precise Lp norm of the Berezin
In this paper,we establish some oscillation criteria for higher order nonlinear delay dynamic equations of the form[rnψ(… r2(r1x△)△…)△]△(t) + h(t)f(x(τ(t))) =0 on an arbitrary time scale T with supT =∞,where n ≥ 2,ψ(u) =|u|γsgn(u) for γ > 0,ri(1 ≤ i ≤ n)
将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问题”.文章从网课教学中学生连麦不积极这个现状出发,深刻分析学生在解答“年龄问题”时遇到的障碍,谈谈在解决“年龄问题”时所用到的一些策略.