论文部分内容阅读
设X是一个Banach空间,X的James常数定义为J(X)=sup{|x+y|∧|x-y|:x,y∈Sx}。Dhompongsa^[1]等又引入广义James常数为J(a,X)=sup{|x+y|∧|x-z|:x,y,z∈Sx|y-z|≤a|x|},其中a是一个非负数,显见J(0,x)=J(x),相应地,X的von Neumann-Jordan常数CNJ(X)定义为: