论文部分内容阅读
传统粒子群算法初期搜索过程中,种群过快地向当前最优粒子飞行,易导致早熟收敛;而算法后期,粒子大量聚集,算法收敛速度慢。通过引入种群进食和二次飞行,提出一种全局性的进食粒子群算法(EPSO),使局部最优附近的粒子进食后快速飞离,以改善种群多样性。并将共轭梯度法(CG)与EPSO相结合形成一种混合优化策略,其中CG用于EPSO的局部搜索过程,以提高收敛速度和精度。利用高维标准测试函数进行寻优实验,并与近年文献方法进行对比,实验结果表明该算法能够克服局部最优的不足,同时继承了CG局部寻优精度高和收敛速度快