论文部分内容阅读
该文通过研究海量的发电机组历史污染物排放数据,提出一种基于LSTM-RNN深度学习的改进型发电机组排放预测算法ALSTM-RNN(A-R)。A-R算法可以有效地提取出模型特征量,结合数据的归一化对模型的结果进行优化调整,以降低模型训练时间,提高预测精度。通过在不同的发电机组测试试验,A-R算法较最小二乘法(LSM),支持向量机回归(SVR)具有较小的均方误差值,较LSTM-RNN模型预测方差更小,更加稳定,具有较好的鲁棒性。