Thermo-mechanical fatigue reliability optimization of PBGA solder joints based on ANN-PSO

来源 :中南工业大学学报(英文版) | 被引量 : 0次 | 上传用户:shmily2
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Based on a method combined artificial neural network (ANN) with particle swarm optimization (PSO) algorithm, the thermo-mechanical fatigue reliability of plastic ball grid array (PBGA) solder joints was studied. The simulation experiments of accelerated thermal cycling test were performed by ANSYS software. Based on orthogonal array experiments, a back-propagation artificial neural network (BPNN) was used to establish the nonlinear multivariate relationship between thermo-mechanical fatigue reliability and control factors. Then, PSO was applied to obtaining the optimal levels of control factors by using the output of BPNN as the affinity measure. The results show that the control factors, such as print circuit board (PCB) size, PCB thickness, substrate size,substrate thickness, PCB coefficient of thermal expansion (CTE), substrate CTE, silicon die CTE, and solder joint CTE, have a great influence on thermo-mechanical fatigue reliability of PBGA solder joints. The ratio of signal to noise of ANN-PSO method is 51.77dB and its error is 33.3% less than that of Taguchi method. Moreover, the running time of ANN-PSO method is only 2% of that of the BPNN. These conclusions are verified by the confirmative experiments.
其他文献
【目的】通过比较不同生长时期果林间种与单种模式下南板蓝的株高及分枝数的动态变化规律,阐明南板蓝的生长发育规律。【方法】分别将南板蓝种植于无遮荫种植地、蕉林地及柑
在了解了代数表示论及量子群理论的一些相关知识之后,我们可以知道,在代数的结构和它的表示之间存在着紧密的联系,所以在对量子群进行研究时,对它的表示的研究也是必不可少的。在
随着现代通讯技术、计算机技术及自动化技术的飞速发展,需要研究通过电话线实现工厂的无人值守、远程诊断维护和管理自动化技术。文章运用PLC远程诊断技术的工作原理,建立堆
The driving voltage and current signals of piezoeeramie transducer (PZT) were measured directly by designing circuits from ultrasonic generator and using a data
2013年9月25日,由吉林省龙井市农业技术推广中心举办的玉米、水稻高光效栽培示范田及玉米、水稻品比试验、示范田现场会在龙井市老头沟官道村示范基地召开。龙井市农业局副局
在我国,草原是覆盖面积最大的地表防护屏障,在防风固沙、保护水土和生物多样性等方面,都发挥着不可或缺作用。同时草原也是发展畜牧业的物质基础和牧民赖以生存的重要保障。但近
学位
多模态函数优化问题广泛存在于函数优化、决策与设计、工业应用等诸多领域。由于遗传算法的搜索对象是种群,种群中的个体可能分布在解空间的各个角落,只要能够维持种群多样性
期刊
请下载后查看,本文暂不支持在线获取查看简介。 Please download to view, this article does not support online access to view profile.
期刊