论文部分内容阅读
为了实现任务执行效率与执行代价的同步优化,提出了一种云计算环境中的DAG任务多目标调度优化算法。算法将多目标最优化问题以满足Pareto最优的均衡最优解集合的形式进行建模,以启发式方式对模型进行求解;同时,为了衡量多目标均衡解的质量,设计了基于hypervolume方法的评估机制,从而可以得到相互冲突目标间的均衡调度解。通过配置云环境与三种人工合成工作流和两种现实科学工作流的仿真实验测试,结果表明,比较同类单目标算法和多目标启发式算法,算法不仅求解质量更高,而且解的均衡度更好,更加符合现实云的资源使用特征与工作流调度模式。