论文部分内容阅读
合理的选择、设计核函数是支持向量机方法的重要部分,不同的核函数代表了利用支持向量机解决非线性分类问题时,进行的不同的非线性映射。核函数使支持向量机可以很容易地实现非线性算法。为此,提出了一种新的核函数—线性组合核函数,将该核函数应用于支持向量机方法中,并使用该方法对北京地区甜瓜病害图像进行了识别分类;同时也与人工神经网络和其它经典支持向量机核函数的分类结果进行了对比,实验结果也验证了该核函数的有效性。