论文部分内容阅读
对贝叶斯分类中最大似然(ML)公式进行了简化,给出了一种实用的快速计算相似度的方法,在此基础上设计了基于分块Gabor特征提取的贝叶斯人脸识别算法。该算法从原始数字图像出发,先对图像矩阵进行分块,然后对分块子图像进行多分辨率的Gabor特征提取,对每一个特征块设计一个贝叶斯分类器,通过将这些分类器加权平均,得到最后的决策。在FERET人脸数据库的实验结果验证了该方法的有效性。