论文部分内容阅读
介绍一种基于层次的K-均值聚类算法(HKMA)。在统计力学的基础上,对传统K-均值聚类划分矩阵里的元素("隶属"概率)做了形式上的改变,并引入一个调控实际聚类数目的因子。这样,在对同一组数据集进行聚类时,调控因子值不同,结果得到的类数目就不同。用一组二维正态分布的数据集和一组用来测试聚类算法的标准数据集(Iris数)进行测试,结果表明该算法具有层次聚类的性质和较满意的聚类精度。