论文部分内容阅读
探索将XLM-R跨语种预训练语言模型应用在神经机器翻译的源语言端、目标语言端和两端,提高机器翻译的质量.提出3种网络模型,分别在Transformer神经网络模型的编码器、解码器以及两端同时引入预训练的XLM-R多语种词语表示.在WMT英语-德语、IWSLT英语-葡萄牙语以及英语-越南语等翻译中的实验结果表明,对双语平行语料资源丰富的翻译任务,引入XLM-R可以很好地对源语言句子进行编码,从而提高翻译质量;对双语平行语料资源匮乏的翻译任务,引入XLM-R不仅可以很好地对源语言句子进行编码,还可以对源语言端和目标语言端的知识同时进行补充,提高翻译质量.