论文部分内容阅读
A pot experiment was conducted to investigate the effects of nitrogen content [N1(no fertilizer), N2(0.15 g?kg–1), and N3(0.3 g?kg–1)] on the growth and the hydraulic characteristics of peach seedlings under different soil moisture conditions(W1, W2 and W3, in which the soil water content was 45% to 55%, 60% to 70%, and 75% to 80% of the field water capacity, respectively) by using a specialized high pressure flow meter with a root chamber and a coupling, which was connected to plant organs. Leaf area and leaf hydraulic conductivity(KL) increased significantly in the seedlings because of increased soil moisture and N content. KL increased with leaf area. A linear correlation was documented between KL and leaf area. KL was higher in the morning and began to decline sharply after 16:00, at which KL declined after an initial increase. Soil moisture and N content enhanced shoot(Ks) and root(Kr) hydraulic conductivities, thereby improving the low soil moisture condition to a large extent. Ks and Kr of the seedlings were reduced by 32% and 27% respectively in N1, and by 14.7% and 9.4%, respectively in N2, and both in W1, compared with the control treatment. N3 had no significant effect on Ks and Kr under similar conditions. Linear negative correlations were observed between Kr and the excised root diameter as well as between Ks and the shoot stem diameter. The shoot-to-root ratio increased with increase in N content. The shoot-to-root ratio in N3 was increased by 14.37%, compared with N1 in W1 as well as by 12% and 4.39% in W2 and W3, respectively. Knowledge of the effects of soil moisture and N fertilizer on hydraulic characteristics and growth is important. Our results provide basic guidelines for the implementation of water-saving irrigation and fertilization management of nursery stock.
A pot experiment was conducted to investigate the effects of nitrogen content [N1 (no fertilizer), N2 (0.15 g kg-1), and N3 (0.3 g kg-1)] on the growth and the hydraulic characteristics of peach seedlings under different soil moisture conditions (W1, W2 and W3, in which the soil water content was 45% to 55%, 60% to 70%, and 75% to 80% of the field water capacity, respectively) by using a specialized high pressure flow meter with a root chamber and a coupling, which was connected to plant organs. Leaf area and leaf hydraulic conductivity (KL) increased significantly in the seedlings because of increased soil moisture and N content. was clearly between KL and leaf area. KL was higher in the morning and began to decline sharply after 16:00, at which KL declined after an initial increase. Soil moisture and N content enhanced shoot (Ks) and root (Kr) hydraulic conductivities , so improving the low soil moisture condition to a large exten t. Ks and Kr of the seedlings were reduced by 32% and 27% respectively in N1, and by 14.7% and 9.4%, respectively in N2, and both in W1, compared with the control treatment. The shoot-to-root ratio increased were seen in Kr and the excised root diameter as well as between K and the shoot-stem diameter. The shoot-to-root ratio in N3 was increased by 14.37%, compared with N1 in W1 as well as by 12% and 4.39% in W2 and W3, respectively. Knowledge of the effects of soil moisture and N fertilizer on hydraulic characteristics and growth is important. Our results provide basic guidelines for the implementation of water-saving irrigation and fertilization management of nursery stock.