论文部分内容阅读
Fully inactivating SARS-CoV-2,the virus causing coronavirus disease 2019,is of key importance for interrupting virus transmission but is currently performed by using biologically or environmentally hazardous disinfectants.Herein,we report an eco-friendly and efficient electrochemical strategy for inactivating the SARS-CoV-2 using in-situ formed nickel oxide hydroxide as anode catalyst and sodium carbonate as electrolyte.At a voltage of 5 V,the SARS-CoV-2 viruses can be rapidly inactivated with disinfection efficiency reaching 95% in only 30 s and 99.99% in 5 min.Mass spectrometry analysis and theoretical calculations indicate that the reactive oxygen species generated on the anode can oxidize the peptide chains and induce cleavage of the peptide backbone of the receptor binding domain of the SARS-CoV-2 spike glycoprotein,and thereby disables the virus.This strategy provides a sustainable and highly efficient approach for the disinfection of the SARS-CoV-2 viruliferous aerosols and wastewater.