论文部分内容阅读
在模式分类学习问题中,训练数据中的标注差错(也称类别噪声)对分类器的性能有很大的影响。本文将一种新近提出的连续动作学习自动机(即聚焦区间学习自动机)应用于针对类别噪声的容噪学习问题。分类器采用简单的单隐层前馈神经网络,利用一个由这种学习自动机组成的自动机团队,对神经网络的权值参数进行学习。通过广义异或问题和Iris数据集的仿真试验,将该算法与两种基于群体搜索的优化算法——粒子群优化(PSO)和差分进化(DE)进行了比较研究。结果表明,新算法具有更好的容噪学习性能。